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Abstract

This paper discusses the development of a simple model for de-
scribing the decay of a homogeneous turbulence subjected to a
weak fluid acceleration. A sufficiently weak fluid acceleration
may not affect the anisotropy of a decaying homogeneous turbu-
lence. Additionally, the turbulent kinetic energy and its dissipa-
tion each follow a power law in homogeneous turbulence when
the weak fluid acceleration is absent. Considering these char-
acteristics, the governing equations describing the effect of the
weak acceleration on the turbulent kinetic energy and its dissi-
pation are derived. The derived equations are then numerically
simulated. When the fluid acceleration is sufficiently small, its
effect on the turbulent time scale is negligible. This result sim-
plifies the governing equation for the kinetic energy and yields
a simple formula describing the effect of the fluid acceleration.
However, the derived simple formula does not necessarily agree
with the numerical results. The deviation between the simple
formula and the numerical results is considered to be character-
ized by the decay exponent.

1. Introduction

Decaying axisymmetric homogeneous turbulence is a funda-
mental type of decaying turbulence that has been observed in
the turbulent flows of various engineering problems. The decay
of grid-generated turbulence in laboratory experiments is simi-
lar to that of axisymmetric homogeneous turbulence. Decaying
axisymmetric homogeneous turbulence is also found in homo-
geneous turbulence distorted by the axisymmetric strain of the
mean flow. Turbulence distortion is a classical problem, as dis-
cussed by Prandtl [1]. Previous studies [2, 3] have investigated
the effects of the mean distortion on decaying homogeneous tur-
bulence. In experiments on grid-generated turbulence, the dis-
tortion of the mean flow field has also been used to improve the
anisotropy of grid-generated turbulence [4].

Recently, Kurian and Frandsson [5] experimentally studied the
effects of weak fluid acceleration on the decay of grid-generated
turbulence. The magnitude of the acceleration parameter char-
acterizing the fluid acceleration is small. Although most types
of distortion investigated in previous studies have been found to
affect the anisotropy of homogeneous turbulence, the distortion
caused by weak fluid acceleration, hereafter called the small
strain, minimally affects the anisotropy. Decaying nonequi-
librium homogeneous turbulence has also been studied [6].
Hurst and Vassilicos experimentally investigated the fundamen-
tal characteristics of nonequilibrium homogeneous turbulence
[7]. There have been a number of successful studies on nonequi-
librium homogeneous turbulence [8, 9, 10, 11, 12]. In the
present study, decaying homogeneous turbulence affected by
the small strain is considered as a representation of decaying
nonequilibrium homogeneous turbulence. Therefore, this pa-
per presents an additional point of view regarding the study of
nonequilibrium homogeneous turbulence.

The purpose of this study is to clarify the effects of the small
strain on the decay of homogeneous turbulence. Because the

strain is small in the present study, RDT (Rapid Distortion The-
ory) is not appropriate for the present research problem. There-
fore, in the present study, the standard k–ε model [13], which
is also a classical framework model for turbulence, is applied to
solve the present research problem. The application of the k–ε
model to solve the present research problem allows the effect of
the small strain on the decaying homogeneous turbulence to be
described by a mathematical formula. Because the small strain
does not affect the anisotropy of the homogeneous turbulence,
the governing equations of the k–ε model can be simplified.
When the small strain is absent, the turbulent kinetic energy and
its dissipation in a decaying homogeneous turbulence each fol-
low a power law. The governing equations describing the effect
of the small strain are derived based on this power-law decay.

This study focused on the fact that the small strain negligibly
affects the turbulent time scale, as shown in a previous study.
When the turbulent time scale is not affected by the small strain,
the governing equation that describes the effects can be simpli-
fied. By comparing the exact solution of the simplified govern-
ing equation with the numerical solution of the original govern-
ing equation, this paper discusses the effects of the small strain
on the decay of homogeneous turbulence.

2. Methods

The standard k–ε model is applied to determine the effects of
the small strain on a decaying homogeneous turbulence. In the
decaying homogeneous turbulence affected by the small strain,
as shown in a previous study [13], the governing equations of
the model take the following simple form:

dk
dt ′

= P− ε

dε
dt ′

= Cε1P
ε
k
− n+1

n
ε2

k
, (1)

where k, P, and ε are turbulent kinetic energy, its produc-
tion term, and its dissipation, respectively, and t ′ is the dimen-
sional time and Cε1 ≈ 1.44 is the model coefficient. When the
anisotropy of the homogeneous turbulence is axisymmetric, the
production term P in the above governing equations is given as

P = Po
dU ′

dx
k(t ′), Po =

2(a−1)
1+2a

, a =
⟨v2⟩
⟨u2⟩

=
⟨w2⟩
⟨u2⟩

, (2)

where the parameters Po and a characterize the magnitude of
the production term and the anisotropy, respectively. Here
u,v, and w are velocity fluctuations for streamwise, transverse,
and spanwise directions, and ⟨ ⟩ denotes ensemble average.

In decaying homogeneous turbulence that is not affected by the
strain of the mean flow, the turbulent kinetic energy and dissi-
pation are described by the following power laws:

k(t) = ko t−n,ε(t) = εo t−(n+1), (3)

where t = t ′/t ′c is the nondimensional time, t ′c = M/Uo is the
characteristic time of the bulk flow of a grid-generated turbu-
lence, and n is the decay exponent, where M is the mesh size
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Figure 1: Effect of the small strain on the turbulent time scale.
The effect is characterized by 100( f (t)/g(t)−1). The turbulent
time scale increases with increasing small strain. The effect of
the small strain on the turbulent time scale is independent of the
decay exponent.

of a turbulence-generating grid. Additionally, ko and εo are the
decay coefficients of the turbulent kinetic energy and its dissi-
pation, respectively, and εo is defined as εo = nUoko/M. These
power laws have been commonly accepted in previous studies.
The decay exponent is generally slightly larger than unity and
may depend on the Reynolds number of flow field [5].

The turbulent kinetic energy affected by the small strain and its
dissipation may not follow these power laws. To characterize
the effects of the small strain on these parameters, two nondi-
mensional functions f (t) and g(t) are defined to satisfy

k(t) = f (t)ko t−n,ε(t) = g(t)εo t−(n+1). (4)

Combining these nondimensional functions with the original
governing equations of the model yields

d f (t)
dt

= PoS f (t)+n
f (t)−g(t)

t
dg(t)

dt
= Cε1PoSg(t)+(n+1)

g(t)
f (t)

f (t)−g(t)
t

, (5)

where S = (dU ′/dx)/(M/Uo). The effect of the small strain on
the turbulent kinetic energy and its dissipation are simulated by
solving the above derived governing equations (Eq.(5)). The
derived governing equations do not include ko and εo, the mag-
nitudes of which are directly related to the turbulent Reynolds
number. Therefore, the solutions of f (t) and g(t) depend on
these two quantities.

The derived governing equation is numerically solved using the
standard fourth-order Runge–Kutta scheme. The derived equa-
tion is incorporated up to t = 300. The derived governing equa-
tion includes the coefficients and parameters. In the present
simulation, the model coefficient Cε1 is set to 1.44, the decay
exponent is set to n = 1.2 or 1.5, and the anisotropy is a = 0.5,
which yields Po = −0.5. The value of the anisotropy is deter-
mined based on the experimental results of previous studies in
which grid-generated turbulence is measured (e.g., [4]). Fol-
lowing the previous study, S is set to 1× 10−3, 3× 10−4, and
1×10−4.
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Figure 2: Effects of the small strain on the turbulent kinetic
energy f . The small strain of the mean field decreases the tur-
bulent kinetic energy. Temporal variations of fm(t), which are
exact solutions of the simplified equations, are also shown in
the figure. The temporal variations of fm(t) do not agree with
those of f .

3. Results

3.1 Time Scale

First, the effect of the small strain on the turbulent time scale is
examined. When the small strain is absent, the following simple
equation for the turbulent time scale can be derived:

k(t)
ε(t)

=
M

nUo
t. (6)

Using the two nondimensional functions, the effect of the small
strain on the turbulent time scale is given by

k(t)
ε(t)

=
f (t)
g(t)

M
nUo

t, (7)

where f (0) = g(0) = 1 at the initial state. Therefore, as shown
above, the ratio of the two functions describes the effect of the
small strain on the time scale.

The effect of the small strain on the time scale is described by
the ratio between f (t) and g(t). When S is small, the effect of
the small strain on the time scale may be negligible as shown
in Figure 1. When the time scale is not affected by the small
strain, the following simple relation is true:

f (t)
g(t)

= 1. (8)

f (t) and g(t) are unity in the initial state, and when the effect of
the small strain is negligible, f (t) and g(t) remain at their initial
values of unity.

The focus of this study then turned to the term ( f (t)−g(t))/t in
the derived governing equation (Eq. (5)). When the small strain
does not affect the time scale, the following condition is true:

f (t)−g(t)
t

= 0. (9)

This condition simplifies the derived equation of f (t) (Eq. (5))
as follows:

d f (t)
dt

= PoS f (t). (10)
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Figure 3: Relative difference ( fm(t)− f (t))/ f (t) between f (t)
and fm(t). The temporal variation of ( fm(t)− f (t))/ f (t) de-
pends on the decay exponent. The relative differences at differ-
ent values of S can be approximated by linear functions that are
directly characterized by the decay exponent.

This equation is a simple ordinary differential equations. Al-
though the original equation of f (t) includes g(t), when the
time scale is unaffected by the small strain, the differential equa-
tion of f (t) simplifies to a linear equation.

3.2 Exact Solution

The simplified governing equation of f (t) (Eq. (10)) can be
solved analytically. The exact solution of f (t) is derived as

f (t) =Co ePoSt , (11)

where Co is a constant of integration. The solution of f (t)
(Eq.(11)) is based on an exponential function. A formula for
the constant of integration is then obtained. In the present sim-
ulation, f (0) is set to unity. This condition yields Co = 1. By
applying this condition to the exact solution of f (t), the com-
plete solution fm(t) is derived as

fm(t) = ePoSt . (12)

The simplicity of the solution arises from the fact that the effect
of the small strain on the time scale is negligible. When this
effect is not small, the formula for f (t) is more complex.

The derived solution fm(t) is then validated by comparison with
numerical results. Figure 2 compares the temporal evolution of
fm(t) with the numerical results of f (t). As shown in Figure 2,
f (t) is smaller than unity. This indicates that the small strain of
the mean flow reduce the turbulent kinetic energy. The deviation
of f (t) from unity increases with increasing S. fm(t) is also
smaller than unity, and its deviation from unity also increased
with increasing S. Therefore, the temporal evolution of fm(t)
agrees qualitatively with that of f (t). However, the absolute
deviation of fm(t) from unity is larger than that of f (t).

The disagreement between the temporal evolutions of fm(t) and
f (t) is discussed here. The relative difference between fm(t)
and f (t) is calculated as ( fm(t)− f (t))/ f (t). Figure 3 shows
the temporal evolution of ( fm(t)− f (t))/ f (t) at different values
of S. As shown in Figure 3, the temporal evolution of the rel-
ative difference collapsed when (St) is used as the independent
variable instead of t. The relative difference ( fm(t)− f (t))/ f (t)
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Figure 4: Relationship between the nondimensional time t and
the streamwise direction normalized by x/M. This relationship
depends on the value of S. The nondimensional time t is smaller
than x/M because of the presence of S in Eq. (19).

depends on the decay exponent n. The relative difference at
n = 1.5 is larger than that at n = 1.2. Therefore, the absolute
value of ( fm(t)− f (t))/ f (t) increases with increasing n.

The temporal evolution of fm(t) is similar to each linear evolu-
tion. This is because the magnitude of S is small. Specifically,
the following relation is true when S is small:

fm(t) = ePoSt = 1+PoSt + · · · . (13)

The temporal evolution of f (t) can also be approximated as a
linear function, although the exact mathematical formula of f (t)
is obtained here. Therefore, the following function is defined:

fm(t)− f (t)
f (t)

=−C×nSt, (14)

where C is a constant. Setting this constant to the appropriate
value can fit the above linear function (Eq.(14)) to the numerical
results with sufficient accuracy, as shown in Figure 3, where the
value of C is calculated using least-squares fitting. It should
be noted that the value of C negligibly depends on the value of
the decay exponent, as shown in Figure 3. This independence
suggests that the relative difference between f (t) and fm(t) is
proportional to the decay exponent n.

4. Discussion and Conclusion

4.1 Discussion

The present results are discussed here in relation to a previ-
ous study by Kurian and Frandsson [5] (hereafter referred to as
KF2009). In the present study, the small strain causes the turbu-
lent kinetic energy to decrease. This result agrees qualitatively
with the results of KF2009. As shown in a result of KF2009,
the Taylor length scale, which relates the turbulent time scale
directly, is negligibly affected by the small strain. The present
results suggest that the effect of the small strain on the turbu-
lent time scale is due to the small magnitude of the strain and
does not depend on the decay exponent. Based on the results
of KF2009, the governing equations of the effect of the small
strain on the turbulent kinetic energy indicate that the effect on
the time scale is negligible; this is in agreement with the results
of the present study. The present study suggests that the govern-
ing equation derived by assuming this effect is negligible may



not describe the effect on the turbulent kinetic energy. Although
the effect of the small strain on the turbulent time scale is small,
this small effect must be included to accurately describe the ef-
fect on the turbulent kinetic energy.

The relationship between the nondimensional time t and the
streamwise direction is also considered. Homogeneous turbu-
lence, which is the type of turbulence considered in this study,
decays as a function of time. In contrast, grid-generated tur-
bulence, which is similar to decaying homogeneous turbulence
with a constant convection velocity, decays as a function of dis-
tance in the streamwise direction [14]. Here, the distance in the
streamwise direction is given by (x/M− xo/M) with respect to
the virtual origin xo/M. Because the velocity in the streamwise
direction varies with the distance, the nondimensional time t is
not equal to (x/M − xo/M). Using the normalized streamwise
velocity, the nondimensional time is given as

t =
x/M− xo/M

U/Uo
. (15)

Additionally, S can be defined using an ordinary differential
equation; therefore, the velocity distribution characterized by
S is described as

U (x/M) =Uo

(
1+S

x
M

)
. (16)

Combining Eqs.(15) and (16), the nondimensional time is given
by

t =
x/M− xo/M
1+S (x/M)

. (17)

Figure 4 shows the nondimensional time as a function of x/M
As shown in Figure 4, the deviation of Eq.(17) from t = x/M,
which is obtained when U =Uo, is not small.

4.2 Conclusion

This paper discussed the effect of the small strain of the mean
flow on the decay of a homogeneous turbulence using the stan-
dard k–ε model. First, the governing equations of the effect
of the small strain are derived. When the strain is sufficiently
small, the effect of the small strain on the turbulent time scale
can be negligible. This result is not sensitive to the decay ex-
ponent. In this case, the original governing equation describing
the effect on the turbulence can be simplified to an equation
that can be solved analytically. The exact solution of the sim-
plified equation deviates from the numerical results of the origi-
nal governing equation. The relative difference between the two
solutions, which varies linearly with time, is found to be propor-
tional to the decay exponent. Additionally, a related discussion
of the present results is given.

In future work, the strong assumption, which yielded the origi-
nal governing equation describing the effects of the small strain
on the time scale, will be further specified. Furthermore, the re-
sults in which the relative difference between the exact solution,
which is yielded by modeling the governing equation, and the
numerical results is proportional to the decay exponent will be
discussed. The coefficient characterizing the relative difference
between the linear evolutions will also be determined.
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